

一、搭建调试平台

1、硬件平台 利用电机调试模块,如图所示,主要包括伺服电动机(多摩川)和驱动器(GTHD),负载(惯量盘)需要 卸下来。

一、搭建调试平台

2、伺服系统布线图

主界面

1.工具栏

Offline/online	切换软件离线/在线状态
Disable/Enable	使能/禁止驱动器
Config	触发内部驱动配置
Save	将参数保存到驱动存储中
	Offline/online Disable/Enable Config Save

3.侧边栏

-	获取帮助信息
	指令上方点击F1
	指令上方单击右键
L	在help文档搜索

3.信息帮助栏

向导 电机安裝	向导:包括驱动器设置向导、电机设置向导、自整定向导。
自动调整 驱动器配置 连接	在向导一栏可完成电机的完整调试。
~	驱动配置:完成驱动以及电机的所有参数设置。
电机 反馈 単位 限定 电流折返 数字I/O 模螺 禁止模式 使能和故障	包括电机参数、反馈、运动单元、限制、折返电流、禁止 使能、数字IO等所有配置
调整 运动	调试,运行模式的选择以及三环参数的调试
电流环 速度环 位置环	
(仪表板 专家	面板: 参数指令的输入及示波器监控
终端 示波图	专家界面集终端和示波器于一体
通用 首选项	通用: 软件语言、提示等的设置, 以及参数备份恢复
备份和恢复	

- 1、驱动器软件的连接
- ① 连接USB转串口通信线

使用USB转RS232串口的通信线将驱动器调试接口与电脑USB接口进行连接,这里注意:电脑需要安装

USB转RS232串口的驱动。

1、驱动器软件的连接

_

② 连接伺服驱动器单元

打开GTHD伺服驱动器调试软件"ServoStudio",选择"驱动器配置"→"连接",如图所示,再单击

搜索 & 连接 "按钮,软件将自动搜索驱动器并建立通信。

2、新建电机安装步骤

由于欧系伺服驱动器可支持多个厂家的电机,因此在驱动器软件连接成功后,首先要进行电机安装,通过 电机安装将电机的信息传递给驱动器进行匹配。

① 打开电机参数设置界面

在"驱动器配置"→"电机"进行电机参数配置,选择电机"→"模型"下的电机选择"User Motor"。 单击"新电机"按钮,进入设置电机参数界面。

2、新建电机安装步骤

② 输入电机参数

依据电机厂家所提供的资料填写如图所示的参数。特别注意:

- 1) 峰值电流和持续电流有峰值和有效值之分, Arms为有效值, Amp为峰值;
- 2) 电感和电机电阻指的是定子线圈的线电感跟线电阻。

New Motor		>
● 旋转电机 (○ 直线电机	
电机名	TS4607N7185E200	
电机图片 (可选)		
电机峰值电流	5.1	Arms(有效值)
电机持续电流	1.6	Arms(有效值)
电机最大转速	5000	rpm
电感	24	mH
电机电阻	7.5	ohm
极数	8	
扭矩常数	0.39	Nm/A 有效值 🗸 🗸
转子惯量	0.027	kg-m^2 * 10^-3 🗸 🗸

2、新建电机安装步骤

③ 设定反馈数据

在电机参数填写完成后,单击"下一步",进入如图所示的界面。根据电机资料选择电机的编码器相关参数,包括

编码器类型和分辨率。

New Motor				
多摩川 增量式(8	线)			
eedback Type				
反馈类型	2	编码器类型	11	
Lines per Rev	volution	2500	线数/转	~

~				
	6			
	C			
			0-	FE

2、新建电机安装步骤

④ 温度保护设置

编码器反馈填写完后单击"下一步",出现如图所示的界面,会出现电机过温选项,此处选择"3-Ignore thermostat input",然后单击"Finish"。

Motor Over Temperature Mode	3 -lanore thermo	stat input	
motor over-temperature mode	s ignore alernio.	And albor	

2、新建电机安装步骤

⑤ 配置数字IO

需要设置IO输入状态,以允许驱动器软件进行使能信号的控制。在"驱动器配置"→"数字I/O",将数字输入 "Input1",由1-Remote enable设置为0-Idle。

() 向导	数字1/0		
电机安装 自动调整 驱动器配置	Digital I/Os Drive Scrip	t	
连接 应动契约/号自	状态 名称	模式	反转 连接器
拉·动奋·功言息. 额定功率	Input 1	1 -Remote enable	✓ □ C_3
电机	Input 2	0 -Idle	∧ C_20
反馈	Input 3	1 -Remote enable	C_31
运动单位	Input 4	2 -Clear faults	C_14
限定	Input 5	3 -PLL synchronization	C_32_
电流频 医 数字I/0	Input 6	4 -Emergency Stop	C_15_I
模拟I/O	Input 7	5 -Positive Limit Switch	M_5
回零	Input 8	6 -Negative Limit Switch	M_15
禁止模式	Input 9	8 -Home Switch	M_6
1.2011 1.2012 1.2012	Input 10	9 -Script Trigger	M_16
运动	Input 11	10 -Script Bit 0	M_7_F

2、新建电机安装步骤

⑥ 验证参数

点击"写入驱动器"将电机参数写入到驱动器,再点击"确认"按钮即进入电机确认步骤",电机确认完成后会弹出"电机安装成功"的提示

系列 模型	Ver 8.0 Motor Library	tronix MT Motors Database			
模型	Ver 8.0 Motor Library				
模型					
		V # #			
					_
	新电机				
机.					
	.1/	Name	Value	Units	
		电机名	MT-6CC401C		
		电机类型	0	-	(T
		电机持续电流	4.95	A (peak)	
		电机峰值电流	14.849	A (peak)	
		电机最大转速	4500	rpm	
		扭矩常数	0.262	Nm/A	
		转子惯量	0.029	Kg*m^2*10-3	1
储存	车 从驱动加载	电机电阻	1.87	ohm	
刪除巷	型 写入驱动器	电感	4.22	mH	
		根数	14		
复制到用	戶库	电机过热报警方式	3		
81		换向角补偿	0	Degrees	
N.	1	Motor Commutation Type	0		
10.21	- 停止	转矩换向角预置	0		
确认			0		
确认		转矩换回角预置(MIPEAK)	0		
确认		转矩拱问用预置(MIPEAK) 1/2速度换向角预置	10		

3、驱动器控制参数自整定

初次调试时,在电机安装成功后可以使用驱动器的自整定功能,软件会自动算出驱动器控制算法的增益参数的值, 但需要注意,确保不会发生危险,随时准备按下急停按钮。

① 负载惯量测算

按钮

选择"向导"→"自动调整",可以使用已知惯量,如果不知道,则先识别系统的负载惯量,点击"开始负载估计"

(何	身 <mark>へ</mark> 电机安装	_自动调整				
907	自动调整 功器配置 注接 驱动器的信息 额定功率 电机	第1步: 1负载估测。自动负载估测选择 或:要设置负载惯量选择已知 2 单击"开始" 注意:开始使能驱动器和运转	"运转并估测负载惯量" 的负载惯量和输入值 <mark>电机</mark> !			
	XQ ()) ()) ()) ()) ()) ()) ())))	Estimation Mode: ④ 运转并估测负载惯量 〇 使用已知的负载惯量: Motion distance (0.2 - 3)	0.0 kg-m^2*10^-3 0.5 rev	_		
调	供能和故障 22 25 动 电速度 25 25 25 25 25 25 25 25 25 25	开始负载估计				
通)	终端 示波图 用	● 加戰 增益 测试	保存		BACK	第1步 NEXT

3、驱动器控制参数自整定

① 负载惯量测算

"待估算完成会弹出如图3-69所示的界面。

う 自动调整				×
	负载估算完成。			
	电机惯量(MJ):		0.027	Kg-m^2*10^-3
~	估算负载惯量:		0.097	Kg-m^2*10^-3
	估算总负载:		0.124	Kg-m^2*10^-3
	负载/电机惯量比(LMJR):		3.608	
	ServoStudio 为HD位置模式计算增益者	参数		
	单击"确定"下载此参数到驱动器。			
	ОК	Cancel		

3、驱动器控制参数自整定

② 增益优化

负载估算完成后,点击"OK",然后点击"Next"即进入"自整定"界面,再根据实际情况设置好"距离"(即 位移,根据实际设备确定,单向运动不能超出电机行程)、速度、加速度,如图所示。

速度 (rpm)		Parameters								
负 5 🌩	E	Name	Initial Value	Limit Value	Selected Value	Filter	Filter In Use			
转指令		NL 自适应增益比例因子	0.500	3.000		~	True			
距离 (counts)	12300	NL 扭矩滤波器 2	35.000	90.000	3		False			
	12500	NL 扭矩滤波器 1	1.710	0.010			False			
速度 (rpm)	500 🗬	NL 比例增益	36.460	105.770			False			
加速度 (rpm/s)	16900 🚔	NL 微分-积分 增益	26.790	105.770			False			
		NL 积分增益	17.740	105.770			False			
		NL 自适应增益比例因子	0.000	0.000	.][False			
开始调试										
	保存							BACK	第2步5	NEX

3、驱动器控制参数自整定

② 增益优化

单击"开始调试",即进入"自整定"过程。这里需要注意,在调试过程中由于增益的变化,电机运行会有较大的 声响,属于正常情况。整定完成后会有如图所示的界面提示。

3、驱动器控制参数自整定

③ 测试调试效果

增益优化完成后,单击"OK",再单击"Next"按钮,进入参数验证界面,根据实际需求填写如图3-72所示的各参数。然后单击"运行并画图"进行参数验证并绘制波形图,如图3-73所示。图中PE表示位置误差,PTPVCMD与V分别是规划速度和实际速度,当PE越小,且实际速度和规划速度拟合程度越高时,表明调试的参数越好。

3、驱动器控制参数自整定

④ 保存参数

单击 "NEXT" 进入参数保存界面,再选择如图所示的选项将参数下载到驱动器。

